My Blog List

Tuesday, March 6, 2012

Star Wars - Strategic Defence Initiative


Two things the Zio-Kahal-Communists want destroyed more than anything else:


Catholic Faith (true and completely untainted by the Vatican's total apostasy) in the Only Messiah, the Son of God, Jesus Christ - they have for the most part succeeded in this.


And


A truly Christian and free United States of America - Christian Zionism does not even qualify as Christian faith, it is total apostasy, there is very little freedom left in the entire culture of America, license to do as you please is not freedom especially when (as it does now) it includes destruction of children here and abroad (abortion etc.) and of other peoples and cultures for colonializing empire building; freedom is based only on real moral and lawful recognition of every one else's rights and one's own duties in a truly responsible and respectable society.


The freedom will be finished finally in every sense when the United States, as all fallen empires eventually do, lies helpless before its enemies.

Attacking Iran or allowing Israel to attack Iran would only hasten the end of American empire.

The only intelligent thing to do is withdraw money and support for Israeli empire building and bring our troops home and let the people of the Middle East garrison the Middle East and Russia and China stay in their own backyards and return the United States to the Monroe Doctrine.





Star wars works. Communist Russia (sic) and Communist China (sic) and Zio-Communist 'Israel' don't want it in place or any missile defense because they (all three: Communist Russia (sic) and Communist China (sic) and Zio-Communist 'Israel') want the United States destroyed in a set up conflagration with Iran (which the Mullahs are part of). This must not be allowed.


________________________________________


Additionally:


World War III and the False Peace: Khomeini's Iran: Israel's Ally This has not changed.


WHO'S KILLING THE STAR WARS SCIENTISTS?


________________________________________


See this link: FAS Star Wars SDI Road - Download PDF and view at 100%: FAS Star Wars Road


_________________________________



Star Wars - Strategic Defence Initiative


Star Wars - Strategic Defence Initiative

Ronald Reagan proposes the ground and space based weapons system to protect the US from strategic nuclear missilesReagan delivering the March 23, 1983 speech initiating SDI.

SDI LogoThe Strategic Defense Initiative (SDI), commonly called Star Wars after the popular science fiction movies of the time, was proposed by U.S. President Ronald Reagan on March 23, 1983 to use ground-based and space-based systems to protect the United States from attack by strategic nuclear ballistic missiles. The initiative focused on strategic defense rather than the previous strategic offense doctrine of Mutual assured destruction (MAD).

Though it was never fully developed or deployed [opinion of this article - the facts here are accurate except for that statement], the research and technologies of SDI paved the way for some Anti-ballistic missile systems of today. The Strategic Defense Initiative Organization (SDIO) was set up in 1984 within the United States Department of Defense to the Strategic Defense Initiative. Under the administration of President Bill Clinton in 1993, its name was changed to the Ballistic Missile Defense Organization (BMDO) and its emphasis was shifted from national missile defense to theater missile defense, i.e. from global to regional coverage. This article covers defense efforts under the SDIO.

Strategic missile defence prior to SDIInitial ImpetusProject and proposals
Ground-based programsExtended Range Interceptor (ERINT)Homing Overlay Experiment (HOE)
Exoatmospheric Reentry-vehicle Interception System (ERIS)Directed-energy weapon (DEW) programsX-ray laser
Chemical laserNeutral Particle BeamLaser and mirror experiments
Space-based programsSpace-Based Interceptor (SBI)Brilliant Pebbles
Sensor programsBoost Surveillance and Tracking System (BSTS)Space Surveillance and Tracking System (SSTS)
Brilliant EyesOther Sensor ExperimentsCountermeasures
CostControversy and criticismTreaty Obligations
SDI and MADNon-ICBM Delivery





Strategic missile defence prior to SDI
SDI was not the first U.S. defensive system against nuclear ballistic missiles. In the 1960s, the The Sentinel Program was designed and developed to provide a limited defensive capability, but was never deployed. Sentinel technology was later used in the Safeguard Program, briefly deployed to defend a single U.S. location. In the 1970s the Soviet Union deployed a missile defense system, still operational today, which defends Moscow and nearby missile sites.
SDI is unique from the earlier U.S. and Soviet missile defense efforts. It envisioned using space-oriented basing of defensive systems vs solely ground-launched interceptors. It also initially had the ambitious goal of a near total defense against a massive sophisticated ICBM attack, vs previous systems which were limited in defensive capacity and geographic coverage, and oriented toward a lighter attack.

Initial Impetus
In the fall of 1979, at Reagan's request, Lieutenant General Daniel O. Graham conceived a concept he called the High Frontier, a concept of strategic defense using ground and space based weapons theoretically possible because of emerging technologies. It was designed to replace the doctrine of Mutual assured destruction, a doctrine that Reagan and his aids described as a suicide-pact.

The initial focus of the strategic defense initiative was a nuclear explosion powered X-ray laser designed at Lawrence Livermore National Laboratory by a scientist named Peter Hagelstein who worked with a team called O Group, doing much of the work in the late 1970s and early 1980s. O Group was headed by physicist Lowell Wood, a protégé and friend of Edward Teller, the "father of the hydrogen bomb".

Ronald Reagan was told of Hagelstein's breakthrough by Teller in 1983, which prompted Reagan's March 23, 1983, "Star Wars" speech. Reagan announced, "I call upon the scientific community who gave us nuclear weapons to turn their great talents to the cause of mankind and world peace: to give us the means of rendering these nuclear weapons impotent and obsolete." This speech, along with Reagan's Evil Empire speech on March 8, 1983, in Florida, ushered in the last phase of the Cold War, bringing the nuclear standoff with the Soviet Union to its most critical point before the collapse of the Soviet Union later that decade.

The concept for the space-based portion was to use lasers to shoot down incoming Soviet intercontinental ballistic missiles (ICBM) armed with nuclear warheads. Nobel Prize-winning physicist Hans Bethe went to Livermore in February of 1983 for a 2 day briefing on the x-ray laser, and "Although impressed with its scientific novelty, Bethe went away highly skeptical it would contribute anything to the nation's defense."


Project and proposals



In 1984, the Strategic Defense Initiative Organization (SDIO) was established to oversee the program, which was headed by Lt. General James Alan Abrahamson, USAF, a past Director of the NASA Space Shuttle program. Research and development initiated by the SDIO created significant technological advances in computer systems, component miniaturization, sensors and missile systems that form the basis for current systems.

Initially, the program focused on large scale systems designed to defeat a Soviet offensive strike. However, as the threat diminished, the program shifted towards smaller systems designed to defeat limited or accidental launches.

By 1987, the SDIO developed a national missile defense concept called the Strategic Defense System Phase I Architecture. This concept consisted of ground and space based sensors and weapons, as well as a central battle management system. The ground-based systems operational today trace their roots back to this concept.

In his 1991 State of the Union Address George H. W. Bush shifted the focus of SDI from defense of North America against large scale strikes to a system focusing on theater missile defense called Global Protection Against Limited Strikes (GPALS).

In 1993, the Clinton administration, further shifted the focus to ground-based interceptor missiles and theater scale systems, forming the Ballistic Missile Defense Organization (BMDO) and closing the SDIO. Ballistic missile defense has been revived by the George W. Bush administration as the National Missile Defense and Ground-based Midcourse Defense.


Ground-based programs


ERINT launch from White Sanfs Missile RangeExtended Range Interceptor (ERINT) launch from White Sands Missile Range.

Extended Range Interceptor (ERINT)

The ERINT program was part of SDI's Theater Missile Defense Program and was an extension of the Flexible Lightweight Agile Guided Experiment (FLAGE), which included developing hit-to-kill technology and demonstrating the guidance accuracy of a small, agile, radar-homing vehicle.

FLAGE scored a direct hit against a MGM-52 Lance missile in flight, at White Sands Missile Range in 1987. ERINT was a prototype missile similar to the FLAGE, but it used a new solid-propellant rocket motor allowing it to fly faster and higher than FLAGE.

Under BMDO, ERINT was later chosen as the Patriot Advanced Capability-3 (PAC-3) missile.


Homing Overlay Experiment (HOE)


4 m (13 ft) diameter web deployed by Homing Overlay Experiment

4 m (13 ft) diameter web deployed by Homing Overlay Experiment

It was the first system tested by the Army that employed hit-to-kill, four test launches were conducted in 1983 and 1984. The first three tests failed because of guidance and sensor problems, but the fourth test succeeded.

This technology was later used by the SDIO and expanded into the Exoatmospheric Reentry-vehicle Interception System (ERIS) program.


Exoatmospheric Reentry-vehicle Interception System (ERIS)

Developed by Lockheed as part of the ground based interceptor portion of SDI beginning in 1985. At least two tests occurred in the early 1990s. This system was never deployed, but the technology of the system were used in the Terminal High Altitude Area Defense (THAAD) system and the Ground Based Interceptor currently deployed as part of the Ground-Based Midcourse Defense (GMD) system.


Directed-energy weapon (DEW) programs

X-ray laser
An artist's concept of a Space Laser Satellite Defense System, 1984
An artist's concept of a Space Laser Satellite Defense System, 1984

An early focus of the project was to be a curtain of X-ray lasers powered by nuclear explosions. The curtain was to be deployed, first by a series of missiles launched from submarines during the critical seconds following a Soviet attack, then later by satellites and powered by nuclear warheads built into the satellites - in theory the energy from the warhead detonation was to pump a series of laser emitters in the missiles or satellites and produce an impenetrable barrier to incoming warheads. However, the first test on March 26, 1983, known as the Cabra event, which was performed in an underground shaft, resulted in marginally positive readings that could be dismissed as a faulty detector. Since a nuclear explosion was the power source, the detector was destroyed during the experiment and the results could not be confirmed. Critics often cite the X-ray laser system as the primary focus of SDI and its apparent failure becomes a main reason to oppose SDI. However, the laser was never more than one of the many systems being researched for ballistic missile defense.

Despite the apparent failure of the Cabra test, the long term legacy of the X-ray laser program is the knowledge gained while conducting the research. Several spin-offs include a laboratory x-ray laser for biological imaging and creation of 3D holograms of living organisms, creation of advanced materials like SEAgel and Aerogel, the Electron-Beam Ion Trap facility for physics research and enhanced techniques for early detection of breast cancer.


Chemical laser
SeaLite Beam Director, commonly used as the output for the MIRACL.
Beginning in 1985, the Air Force tested a deuterium fluoride laser known as Mid-Infrared Advanced Chemical Laser (MIRACL) at White Sands Missile Range funded by the SDIO.

During a simulation, the laser successfully destroyed a Titan missile booster in 1985 and it was successfully tested on target drones simulating cruise missiles for the US Navy. After the SDIO closed, the MIRACL was unsuccessfully tested on an old Air Force Satellite for potential use as an Anti-satellite weapon.
SeaLite Beam Director, commonly used as the output for the MIRACL.
The technology was also used to develop the Tactical High Energy Laser(THEL) which is being tested to shoot down artillery shells.

Neutral Particle Beam
In July 1989, the Beam Experiments Aboard a Rocket (BEAR) program launched a sounding rocket containing a neutral particle beam (NPB) accelerator. The experiment successfully demonstrated that a particle beam would operate and propagate as predicted outside the atmosphere and that there are no unexpected side-effects to firing the beam in space. After the rocket was recovered, the particle beam was still operational. According to the BMDO, the research on neutral particle beam accelerators, which was originally funded by the SDIO, could eventually be used to reduce the half life of nuclear waste products using accelerator-driven transmutation technology.


Laser and mirror experiments


LACETechnicians at the Naval Research Laboratory (NRL), work on the Low-powered Atmosphere Compensation Experiment (LACE) satellite.

The High Precision Tracking Experiment (HPTE), launched with the Space Shuttle Discovery on STS-51-G, was tested June 21, 1985 when a Hawaii-based low-power laser successfully tracked the experiment and bounced the laser off of the HPTE mirror.

The Relay mirror experiment (RME), launched in February 1990, demonstrated critical technologies for space-based relay mirrors to be used with an SDI Directed-energy weapon system. The experiment validated stabilization, tracking and pointing concepts and proved that a laser could be relayed from the ground to a 60 cm mirror on an orbiting satellite and back to another ground station with a high degree of accuracy and for extended durations.

Launched on the same rocket as the RME, the Low-power Atmospheric Compensation Experiment (LACE) satellite was built by the United States Naval Research Laboratory (NRL) to explore atmospheric distortion of lasers and real-time adaptive compensation for that distortion. The LACE satellite also included several other experiments to help develop and improve SDI sensors, including target discrimination using background radiation and tracking ballistic missiles using Ultra-Violet Plume Imaging (UVPI). LACE was also used to evaluate ground based adaptive optics, a technique now used in civilian telescopes to remove atmospheric distortions.


Space-based programs

Space-Based Interceptor (SBI)


Groups of interceptors were to be housed in orbital modules. Successful hover testing was completed in 1988 and demonstrated successful integration of the sensor and propulsion systems in the prototype SBI. It also demonstrated the ability of the seeker to shift its aim-point from a rocket's hot plume to its cool body, a first for infrared ABM seekers. Final hover testing occurred in 1992 using miniaturized components similar to what would have actually been used in an operational interceptor. These prototypes eventually evolved into the Brilliant Pebbles program.



Brilliant Pebbles
.

Brilliant Pebbles was a non-nuclear system of satellite-based, watermelon-sized, mini-missiles designed to use a high-velocity kinetic warhead.

It was designed to operate in conjunction with the Brilliant Eyes sensor system and would have detected and destroyed missiles without any external guidance.
Brilliant Pebbles concept artwork
Brilliant Pebbles concept artwork
Space based interceptor
John H. Nuckolls, director ofLawrence Livermore National Laboratory from 1988 to 1994, described the system as “The crowning achievement of the Strategic Defense Initiative”.

The technologies developed for SDI were used in numerous later projects.

For example, the sensors and cameras that were developed for Brilliant Pebbles became components of the Clementine mission and SDI technologies may also have a role in future missile defense efforts.

Though regarded as one of the most capable SDI systems, the Brilliant Pebbles program was canceled in 1994 by the BMDO. However, it is being reevaluated for possible future use by the MDA.


Sensor programs


Delta Star 183Delta 183 launch vehicle lifts off, carrying the SDI sensor experiment,
"Delta Star", March 24, 1989.


SDIO sensor research encompassed visible light, ultra-violet, infrared and RADAR technologies, and eventually led to the Clementine mission though that mission occurred just after the program transitioned to the BMDO. Like other parts of SDI the sensor system initially was very large scale, but after the Soviet threat diminished it was scaled down.


Boost Surveillance and Tracking System (BSTS)
BSTS was part of the SDIO in the late-80's, and was designed to assist detection of missile launches especially during the boost phase. However, once the SDI program shifted toward theater missile defense, the system left SDIO control in the early 90's and was transferred to the Air Force.

Space Surveillance and Tracking System (SSTS)
SSTS was a system originally designed for tracking ballistic missiles during their mid-course phase. It was designed to work in conjunction with BSTS, but was later scaled down for the Brilliant Eyes program.



Brilliant Eyes
Brilliant Eyes was a simpler derivative of the Space Surveillance and Tracking System (SSTS) that focused on theater ballistic missiles rather than ICBMs and was meant to operate in conjunction with the Brilliant Pebbles system.

Brilliant Eyes was renamed Space and Missile Tracking System (SMTS) and scaled back further under BMDO, and in the late 1990s it became the low earth orbit component of the Air Force's Space Based Infrared System (SBIRS).


Other Sensor Experiments
The Delta 183 program used a satellite known as Delta Star to test several sensor related technologies. Delta Star carried an infrared imager, a long-wave infrared imager, an ensemble of imagers and photometers covering several visible and ultraviolet bands as well as a laser detector and ranging device. The satellite observed several ballistic missile launches including some releasing liquid propellant as a countermeasure to detection. Data from the experiments led to advances in sensor technologies.


Countermeasures


An artist's concept of a ground / space-based hybrid laser weapon, 1984An artist's concept of a ground / space-based hybrid laser weapon, 1984.
In warfighting, countermeasures can have two general meanings:

(1) The immediate tactical action to reduce vulnerability, such as chaff, decoys, and maneuvering.

(2) Counter strategies which exploit a weakness of an opposing system, such as adding more MIRVwarheads which are less expensive than the interceptors fired against them.

Countermeasures of various types have long been a key part of warfighting strategy. However with SDI they attained a special prominence due to the system cost, scenario of a massive sophisticated attack, strategic consequences of a less-than-perfect defense, outer-space basing of many proposed weapons systems, and political debate.

Whereas the current U.S. NMD system is designed around a relatively limited unsophisticated attack, SDI planned for a massive attack by a sophisticated opponent. This raised significant issues about economic and technical costs defending against anti-ballistic missile defense countermeasures used by the attacking side.

For example if it had been much cheaper to add attacking warheads than to add defenses, an attacker of similar economic power could have simply out produced the defender. This requirement of being "cost effective at the margin" was first formulated by Paul Nitze in November, 1985.

A sophisticated attacker having the technology to use decoys, shielding, maneuvering warheads, or other countermeasures would have multiplied the difficulty and cost of intercepting the real warheads.

SDI envisioned many space-based systems in fixed orbits. In theory an advanced opponent could have targeted those, in turn requiring self-defense capability or increased numbers to compensate for attrition. SDI design and operational planning had to factor in all these countermeasures and the associated cost.


Cost
$44 billion was appropriated by Congress for SDI from 1983 to 1993. This may not include SDI research funded by the Department of Energy.


Controversy and criticism

SDI wasn't just lasers.


In this Kinetic Energy Weapon test, a seven gram Lexan projectile was fired from a light gas gun at a velocity of 23,000 feet per second at this cast aluminum block.
Test result of the Kinetic Energy Weapon




SDI is believed to have been first dubbed "Star Wars" by opponent Dr. Carol Rosin, a consultant and former spokesperson for Wernher von Braun. Some critics used that term derisively, implying it is an impractical science fiction fantasy, but supporters have adopted the usage as well on the grounds that yesterday's science fiction is often tomorrow's engineering. In comments to the media March 7, 1986, Acting Deputy Director of SDIO, Dr. Gerold Yonas, described the name "Star Wars" as an important tool for Soviet disinformation and asserted that the nickname gave an entirely wrong impression of SDI.

Ashton Carter, a fellow at MIT, assessed SDI for Congress in 1984. He said there were a number of difficulties in creating an adequate missile defense shield, with or without lasers. He said X-rays have a limited scope because they become diffused through the atmosphere, much like the beam of a flash light spreading outward in all directions. This means the X-rays needed to be close to the Soviet Union, especially during the critical few minutes of the booster phase, in order for the Soviet missiles to be both detectable to radar and targeted by the lasers themselves.

Opponents disagreed, saying advances in technology, such as using very strong laser beams, and by "bleaching" the column of air surrounding the laser beam, could increase the distance that the X-ray would reach to successfully hit its target. Physicist Hans Bethe, who worked with Teller on both the atom bomb and the hydrogen bomb, both at Los Alamos, claimed a laser defense shield was unfeasible. He said that a defensive system was costly and difficult to build, but simple to destroy, and claimed that the Soviets could easily use thousands of decoys to overwhelm it during a nuclear attack. He believed that the only way to stop the threat of nuclear war was through diplomacy and dismissed the idea of a technical solution to the Cold War, saying that a defense shield could be viewed as threatening because it would limit or destroy Soviet offensive capabilities while leaving the American offense intact.

In March 1984, Bethe coauthored a 106-page report for the Union of Concerned Scientists that concluded "the X-ray laser offers no prospect of being a useful component in a system for ballistic missile defense."

Teller countered that Bethe and the other anti-defense activists could not have it both ways. Teller said Bethe had helped him usher in the nuclear age, had become opposed to nuclear weapons and afraid of nuclear war. But, Bethe was also opposed to stopping the threat of offensive capabilities through massive defensive programs. Teller testified before Congress that Bethe, "instead of objecting on scientific and technical grounds, which he thoroughly understands, he now objects on the grounds of politics, on grounds of military feasibility of military deployment, on other grounds of difficult issues which are quite outside the range of his professional cognizance or mine."

Supporters of SDI hail it for contributing to or at least accelerating the fall of the Soviet Union by the strategy of technology, which was a prevalent doctrine at the time. At Reagan and Gorbachev's October 1986 meeting in Iceland, Gorbachev opposed this defensive shield, while Reagan wanted to keep it, and offered to give the technology to the Soviets. Gorbachev said he didn't believe the offer, saying "Excuse me, Mr. President, but I do not take your idea of sharing SDI seriously. You don't want to share even petroleum equipment, automatic machine tools or equipment for dairies, while sharing SDI would be a second American Revolution."

Both Reagan and Gorbachev proposed total elimination of all nuclear-armed missiles, but SDI and intermediate-range missiles were sticking points. While SDI was a disagreement, the Reykjavik Summit led to the Intermediate-Range Nuclear Forces Treaty, which some have claimed was an outgrowth of Gorbachev's fear of SDI. Opponents of the program say that Mikhail Gorbachev's reforms were the cause of the USSR's collapse and that SDI was an unrealistic and expensive program. Furthermore, some believed that Gorbachev's opposition to SDI was intended to encourage the United States to pursue ABM defense at great economic expense. To quote Gorbachev, "But I think that I am even helping the president [Reagan] with SDI. After all, your people say that if Gorbachev attacks SDI and space weapons so much, it means the idea deserves more respect. They even say that if it were not for me, no one would listen to the idea at all. And some even claim that I want to drag the United States into unnecessary expenditures with this."

There was also the question of how to test this massive weapons system under conditions resembling nuclear war.


Treaty Obligations
Another criticism of SDI was that it would require the United States to modify, withdraw from, or violate previously ratified treaties. The Outer Space Treaty of 1967, which requires "States Parties to the Treaty undertake not to place in orbit around the Earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction, install such weapons on celestial bodies, or station such weapons in outer space in any other manner" would forbid the US from pre-positioning in earth orbit any devices powered by nuclear weapons, or any devices capable of "mass destruction". Only the nuclear pumped X-ray laser would have violated this treaty since other SDI systems would not utilize nuclear weapons. The Anti-Ballistic Missile Treaty and its subsequent protocol, which limited missile defenses to one location per country at 100 missiles each, would have been violated by SDI ground-based interceptors. The Nuclear Non-Proliferation Treaty requires "Each of the Parties to the Treaty undertakes to pursue negotiations in good faith on effective measures relating to cessation of the nuclear arms race at an early date and to nuclear disarmament, and on a treaty on general and complete disarmament under strict and effective international control." Many viewed favoring deployment of ABM systems as an escalation rather than cessation of the nuclear arms race, and therefore a violation of this clause.


SDI and MAD
SDI was criticized for potentially disrupting the strategic doctrine of Mutual Assured Destruction.

MAD postulated that intentional nuclear attack was inhibited by the certain ensuing mutual self-destruction. Even if a nuclear first strike destroyed many of the opponent's weapons, sufficient nuclear missiles would survive to render a devastating counter-strike at the attacker. The criticism was that SDI could have potentially allowed an attacker to survive the lighter counter-strike, thus encouraging a first strike by the side having SDI. Another destabilizing scenario was countries being tempted to strike first before SDI was deployed, thereby avoiding a disadvantaged nuclear posture.

Ronald Reagan responded that SDI would be given to the Soviet Union to prevent the imbalance from occurring. How and whether this massive technology transfer would have happened was often debated. A complication of the MAD argument was that MAD only covered intentional nuclear attacks by a rational opponent with similar values, not accidental launches, rogue launches, or launches by non-state entities.


Non-ICBM Delivery
Another criticism of SDI was that it would not be effective against non-space faring weapons, namely cruise missiles, bombers, and non-conventional delivery methods such as delivery via a commercial naval vessels. This latter method in particular would be attractive to terrorists and rogue states as it would be inexpensive, difficult to trace, and technologically undemanding.



No comments:

Post a Comment