My Blog List

Saturday, March 9, 2013


This image of the continental United States at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012. The image was made possible by the satellite's "day-night band" of the Visible Infrared Imaging Radiometer Suite (VIIRS), which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires and reflected moonlight. Credit: NASA Earth Observatory/NOAA NGDC

Many satellites are equipped to look at Earth during the day, when they can observe our planet fully illuminated by the sun. With a new sensor aboard the NASA-NOAA Suomi National Polar-orbiting Partnership (NPP) satellite launched last year, scientists now can observe Earth's atmosphere and surface during nighttime hours.

The new sensor, the day-night band of the Visible Infrared Imaging Radiometer Suite (VIIRS), is sensitive enough to detect the nocturnal glow produced by Earth's atmosphere and the light from a single ship in the sea. Satellites in the U.S. Defense Meteorological Satellite Program have been making observations with low-light sensors for 40 years. But the VIIRS day-night band can better detect and resolve Earth's night lights.

The new, higher resolution composite image of Earth at night was released at a news conference at the American Geophysical Union meeting in San Francisco. This and other VIIRS day-night band images are providing researchers with valuable data for a wide variety of previously unseen or poorly seen events.

"For all the reasons that we need to see Earth during the day, we also need to see Earth at night," said Steve Miller, a researcher at NOAA's Colorado State University Cooperative Institute for Research in the Atmosphere. "Unlike humans, the Earth never sleeps."

source:       January 16, 2013

Unlike a camera that captures a picture in one exposure, the day-night band produces an image by repeatedly scanning a scene and resolving it as millions of individual pixels. Then, the day-night band reviews the amount of light in each pixel. If it is very bright, a low-gain mode prevents the pixel from oversaturating. If the pixel is very dark, the signal is amplified.

Composite map of the world assembled from data acquired by the Suomi NPP satellite in April and October 2012.

Credit: NASA Earth Observatory/NOAA NGDC

Africa...especially Central Africa...

Has obviously been depopulated.

No comments:

Post a Comment